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ABSTRACT

Twenty-tfour machined models were collapsed under external
hydrostatic pressure to evaluate the effcct of intermediate
heavy frames on the elastic general-instability strength of
ring-stiffened cylinders. The models were designed with
various overall lengths, heavy-frame spacings, and heavy-
frame sizes; the cylinder diameter, the shell thickuness,
and the typicai-stiffener size and spacing were held constant.

The test results indicate that the effectiveness of a
particnlar size of intermediate heavy frame decreases as the
cylinder is lengthened at least to six diameters and also that
the minimum size of heavy frames necessary to socalize the
failure between the heavy frames is possibly not udependent
upon their spacing.

The values predicted by available analytical solutions
show poor agreement with experimental results, whereas an
existing empirical heavy-frame fornula and a formula presented
herein show better correlation,

It should be recognized that the models tested were
designed in 2n extreme geometry range where the tvpical
stiffener area was small in relation %o the shell area and
that further experimental investigation is necessary in cases
where the typical frames are comparatively much larger, as
in the hull structure of deep-diving submersibles.

ADMINISTRATIVE INFORMATION

The investigation discussed in this refort was carried out as part
of the David Taylor Model Basin Submarine Structural Research program under
Prcject S-FO13 03 02, Task 1952.

INTRODUCTION

The effectiveness of intermediate heavy frames in increasing the
elastic general-instability strength of hydrostatically loaded, ring~
stiffened cylinders is being investigated as a part of the David Taylor
¥odel Basin Submarine Structural Resasarch Program. This information is
inmportant for the efficient structural design of long compartments of deep-
diving submersibles., No proven dc3ign methcds or criteria are presently
available for the design of this type of framing systen.

Previous 2xperimental results obtained from nondestructive *&s5is of
a machined ring-stiffened cylinder with a single heavy frame were reported
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in Reference 1.* These results indicated that a heavy frame can be an
effective substitute for an internal bulkhead in increasing the elastic
general-instability strength of a cylindrical pressure hull, Two heavy-
frame solutions were presented, one an empirical solution based on the Le’v_v2
ring forrmla and the other a modification of Kendrick!s Part IV3 analytical
solution; these vielded results which were in close agreement with the
experimental findings. However, it was stated in Reference 1 that the
accuracy of the two solutions should be further investigated through
destructive testing of small-diameter machined cylinders.

Twenty=four models were designed and testad to determine the effect
of varying the cylinder length and the heavy-frame spacing, in addition to
the heavy-frame strength, on tha elastic overall collapse pressure. The
experimental results are compared with the two heavy-frame solutions of
Reference 1 and a solution presented herein.

DESCRIPTION OF MODELS

Determination of the elastic general-instability strength of sub-
marine pressure hulls is difficult since the hulis are desigmed to fail by
yielding of the structural material. Taerefore, in order to check the
validity of the heavy frame solutions in the elastic range, it was neces-
sary to design the test cylinders with thick shells and light frames
relative to submarine geometr so that the uwodels would buckle elastically
before yielding, Manufacturing the models of a material having a low
modulus of elasticity and « high proportional limit relative to steel also
raises the pressure at which yieiding initiates and iowers the pressure at
vwhich the cylinder buckles.

The models reported herein were machined from 7075-T6 aluminum
alloy bar stock (proportional lumit = 60,000 psi; modulus of elasticity =
10,800,0C0 psi). A tynical stress-strain curve obtained from a specimen
of this material is shown in Figure 1.

The 24 models were divided into rour groups; the typical dimensions
of the models in Groups 1, 2, 3. and 4 are shown schematically in Figuves

il
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“References are listed on page 25.
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Figure 1 - Typical Stress-Strain Curve
for 7075-T6 Aluminum Aoy

2a, b, c, and d, respectively. For each group, only the heavy-frame
strength was varied, from model to model, from that for a typical stiffener
up to that for a frame which was considered to be fully effective.* The
dimensions of the different heavy frames are shown in Figure 3. For
simplicity of machining, “l.¢ smaller heavy frames were made rectangular in
shape. As they became decrer, some concern was felt that they might be
prone to Iscal crippling because of their low torsioral resistance; there-
fore, the larger heavy frames were designed with a T-configuration for in-
creased stability.

To investigate the effect of overall cylinder length on the elastic
general-instability strength, the models in Groups 1, 2, and 3 were

“A fully effcctive heavy frame is considered to be one which causes the
failure to occur beti=e., uad not including, adjacent heavy frames,
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Figure 3 - Heavy-Frame Sections
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designed with ;E ratios of 12.37, 7.41, and 4,93, respectively. The models

in Group 4 were designed to determine the effect of the heavy-frame spacing
on the elastic general-instability strength by a comparison between the

test results of the Group 4 and the Group 1 models. The-gg-ratio of 11.94

for the Group 4 models was approximately the same as that of the models in
Group 1, but the heavy frames were spaced 40 percent closer. The geometry
of the typically stiffened regions of the models was identical tor the
four groups. Table 1 lists each model with its appropriate grouping and
type of heavy-frame section.

INSTRUMENTATION .AND TEST PEOCEDURE

The instrumentation consisted of electrical-resistance strain gages
on the exterior surface of the models to determine the circumferential
buckling patterms developed under hydrostatic load. Gages were located on
the center-most heavy frame to determine the circumferential buckling
pattern that extended over the full length of the model and on the shell to
determine the circumferential buckling pattern that was localized between
the heavy frames, In each grouping, the models with the strongest heavy
frames were tested first to ensure that the frames were fully effective.
The remaining models in each group were then tested in sequential order of
decreasing heavy-frame strength. Once the buckling patterns of the models
indicated that the heavy frames were less than fully effective, the sub-
sequent models were tested to failure without instrumentation.

The model ends were closed with thick plates which were inserted
into the ends and scaled with O-rings (see Figure 4). Lead wires (single-
strand magnet wire) from the strain gages were strung through a hole in
the tank closure head and sealad in place with epoxy resin. Heavier
stranded hook-up wire was then used to complete the circuit with the re-~
cording equinrment. The volume of the test chamber was reduced by means of

3
-E_ is the distance between end rings divided by the cylinder radlius to

the midplane of the shell.
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TABLE 1

E Parameters of Heavy-Frame-Shell Sections =
i 1] Tt 3
Heavy=Frane Lye IFSe IFSe <
Model Group Section, Sy eFSe - . 1
Nunber | Nuber Number in. in. in. x10 in. £se
3 1 1 ] 0.200 | 0.033 | 0,003 | 1.33 1.00 i
| 2 1 2 77 | o.214 |0.053 ] 0.007) 7.53 5.66 i
i ! 3 1 3 0.195 [ 0.070 | 0.030 | 17.18 12.92 i
4 1 4 0.186 | 0.080 | 0 039 | 24.94 18,75 %
4 5 1 5 0.177 | 0.090 | 0.038 | 33.48 25.92 i
6 ] b 0.160 | 0.115 | 0.072 | 66.44 49.95 3‘
7 1 7 0.149 {0.115 | 0.078 | 62.49 46.98
. 8 1 8 0.136 | 0.129 | 0.006 | 82.31 61.89 ?
; 9 ] 9 0120 | 0.135 | 0.107 | 89.41 67.23 i
) 10 1 30 0.311 |o0.150 | 0.128 | 113.49 85.33 3
11 ] 1 0.103 | 0.162 | 0.143 | 137.93 103.74 §
12 2 | 0.200 | 0.033 | 0.003 1.33 1.00 g
13 2 3 0.195 | 0.070 | 0.030 | 17.18 12,92 E
14 2 5 0.177 | 0.090 | 0,048 | 34.48 25.92
15 2 5 0.160 | 0.115 | 0.072 | 66.44 49.95
16 3 1 0.260 | 0.033 | 0.003 1.33 1.00 z
17 3 2 0.214 | 0.053 | 0.017 7.53 5.66
é 18 3 3 0.195 | 0.070 | 0.030 | 17.18 12.92 :
§ 19 3 4 0.186 | 0.080 | 0.039 | 24.94 18.75 1
E 20 3 5 0.177 | 0.000 | 0.048 | 34.48 25.92 g
§ 21 4 5 0.177 | 0.090 | 0.048 | 34.48 25.92 ;
E 22 4 7 0.149 | 0.115 | 0.078 | ©62.49 46.98 T
: 23 4 9 0.126 |0.135 | 0,307 | 89.41 67.23 %
g 4 10 0.111 |0.150 | 0.128 | 113.49 85.33 g
E “See Figure 3 %
E see Equation (1] £
: 1.I is moment of inertia of heavy-frame-cffective-shell section g
E FSe ghout its centroid. g
TTIfs is moment of i{lertia of !:ypical-frame-effective-shell §
section about its centroid. 5

LT
iy

|
|

- T T et et e o e
T




™

——

9

)

Prtiahiavin T

VEPRSEATTEATSHG RV FTES 1) PPN TSNS oo 9 AREONGE .2 RSN SHIEDURIIPN 3450 B ot P DY KNS 10 ) o o @7 W

-

o PR VERAR R () S D PUATNET ARG e A | e

™\ - = E T

Figure 4b - Pressure Tank System and
Recording Equipment

Figure 4 - Test Apparatus

9

M KRR Yo B LIRESS & B IR RS L R0 8 R AU

L Ve




i

filler blocks to reduce the amount of energy in the pressurizing fluid at
the time of failure and thus limit model damage to a distinguishable
puckling pattern. Each cylinder was lcaded externally, with oil as the
pressurizing medium, in a 4-in. I, D. test tank and the pressure was
measured by a laboratory gage graduated in 1-psi increments.

The pressure was increased at a slow rate during the test run with
3 frequent 2-min holde to record strain measurements. Readings were taken
; at progressively smaller pressure intervals as it became evident from the
- observed strain that large buckling deformations were developing in the
{ model. When it was estimated that approximately 98 percent of the collapse

o el
o B HND i Sk LM SRRGNG Qc REORERA 3313 W0 (ST 0D 170

pressure had been attained, the pressure was released in increments and
the strains recorded. Strain measurements taken while unloading duplicated
those measured during the loading cycle, thus indicating that the observed {

\ o4

: deformations were elastic, Representative pressure-strain plots of the
first pressure run for gages on the heavy frames of Models 23 and 24 are
! shown in Figure 5. For both models, the strain plot for Gage 1 indicates

Modet 2% =Test 1, Mazirium pressure aligined

5 T T T T T T 1 11 Conops
: | Test2,Collopse sressure 1704 psi
—Model 23 —Test 1, M d
146008 [
1600 - Yest 2.Collcpse prussure. 1471pss - Gnyed Gage | =
|
t
s
1400
Goar 4 Goge | 1
1200
] /,
¥
9 1000 t
o 3 E R
: e - o
3 < :
1 2 sool— :
: g ’ ; !
i s }
600 i }
t
X . Q pressure readng: - @ Increcsing pressure reosings. - 4
% O x
400 9 Decreciing pressure readings
/ .
/ 4
200 / /
“ - 2000
200 80C 200 600 2000 © 400 800 200 €00

C eS3ive S110i0 0 MICTONChes per inch

Figure 5 - Representative Experimental Pressure-Strain Plots

10

Y 1L e




[ —

e e ——————r T P ™ m— e e o

that this location was moving radially inward relative to the axisymmetric
deflection while the location at Gags 4 was moving radially outvard relative
to the same reference. In a2 second test run, pressure was increased until
the model collapsed. Models without instiumertation were tested to failure
in one runj the loading rate was approximately the sa:> as that for the
instrumented models.

TEST RESULTS AND DISCUSSION

The experimental coliapse pressures and the observad buckling modes
obtained from the model tests are listed in Table 2; photographs of the
models after failure are shom in Figure 6. In some instances, the
apparen* damage to the modeis implied failure between heavy frames. How-
ever, >xamination of the strain measurements indicated that the collapse
modes were overall and the local damage was a result of the post-buckling
behavior, For instance, Figure 6a shows Model 9 with the visible damage
limited to the region between the two center-most heavy frames, The maximum
circumferential strain distribution recorded for Model 9 during the second
test run (Figure 7a) indicates that a high degree of bending of the heavy
frame had existed in a two-lobe buckling pattern. The shell strain distri-
bution was also in a two-lobe pattern and was in phase with that of the
heavy frame; i.e., for each generator around the circumference of the
medel, the heavy frame and the shell were buckling in the same direction
(overall buckling pattern). If the heavy frames of Model 9 haa been fully
effective, strain distribution patterns such as that showi in Figure ™
{(Model 10) would have been observed. The maximum recorded strain distri-
bution around the heavy frame of Model 10 was also in a two-lobe pattern
but showed only a small degree of bending, while the shell strain distri-
bution indicated that a larger degree of bending had existed at this
location in a four-lobe buckling pattern.

Listed in Table 1 are the computed values of the effcctive moment
of inertia (taken about the longitudinal centroidal axis and refiecting
the circumferential bending rigidity of the structure) of the heavy frame-
shell section that includes the heavy stiffener plus an effective iidth
of shell, as shown in the schematic diagram of Figure 8. The effective
width of shell acting with each frame on a wiformly ring-stiffened

11
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TABLE 2
Experimental Results
Model | Collapse Mode of Failure
Number | Pressure . Longitudinal
psi n ckiing Pattern

1 240 2 Overall

2 299 2

3 407 2

4 464 2

5 555 2

6 795 2

7 777 2

8 913 2

9 963 2
10 1055 4 Between heavy frames
1 1020 4 Between heavy frames
12 480 3 Overall
13 785 3
14 948 3 Y
15 1048 4 Between heavy frames
16 621 3 Overall B

7 757 3
18 967 3
19 1063 3 Y

20 1075s 4 Between heavy frames
21 758 2 Overall

22 111s 2 N
23 40 2 \

24 1704 5 Between heavy frames

*n is the mumder of circumferential buckling

lobes.
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Figure 6d - Group 4

cylinder, as used in the frame stiffness parameter in Reference 4, is equcl
to £ F, + b,

where £ is the unsupported width of shell between frames,
E, is a function defined by Equation {72 ],4 and
b is the faying or web width of the ring frames in
contact with the shell.
Sequential increases in the strength of evenly spaced intermediate frames
on the wiformly stiffened cylinder will cause increasingly more longitudinal
bending of the shell at these locations and subsequently reduce the
effective width of shell acting with the strengthened frame to resist cir-
cumferential buckling., This reduction in width can be approximated by
using a ratio of the combhined cross-sectional area oI a typical frame and
a typical bay width of shell (Afs) to that of the strengthened (heavy)
frame and its bay width of shell (AFS) so that the effective width of shell
2cting with the heavy frame is Af
S
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€¢ 1S DISTANCE FROM CENTROID OF SHELL TO CENTROID 07 FRAME
€ree 1S DISTANCE FROM CENTROID OF SHELL TO CENTROI OF FRAME- EFFECTIVE- SHELL SECTION
Lre 15 ax eFFecTiVE wibTH OF sHELL

Ly 1S THE CENTER-TO-CENTER SPACING OF THE TYPICAL FRAMES
L 1S THE UNSUPPORTED WIDTH OF SHELL
® 1S THE FAYING FLANGE OX WEB wWiDtH

Figure 8 - Heavy-Frame-Effective-Shell Section

Using the effective width concept, the test results are represented
graphically, for Groups 1, 2, 3, and 4, in Figures 9a, b, ¢, and d,
1 : respectively, where the abscissa is the ratio of the effective moment of
inertia of the heavy-frame-shell section (IFs e) to that of the effective <
moment of inertia of the typicai-frame~-shell section (Ifs e)' A significant
observation made in comparing the experimental results of Groups 1, 2, and
3 is that the strength required for a heavy frame to be fully effective in-
creases as the cylinder is lengthened at least to 6 diameters (all other
parameters held constant). For the particular model geometry tested,

(R ——T T v T DY L nm:m«mﬁmmnwmmmmmaw‘mlmmuWﬁmmlﬂmm
L
b4

Ly

cylinder lengths (LB) of 2 ]"F’* 3 LF’ and 5 Lo required IL'SS values of at
fse
least 18.5, 37.0, and 78.0, respectively, to cause buckling between heavy

frames. These results indicate that a 322 percent increase in thc moment
of inertia of the heavy frames is required to maintain a constant general-
instability pressure if the model is lengthened 150 percent. Figure 10
illustrates the manner in which the critical pressure varies with cylinder
length for a particular heavy-frame size. The solid line curves stow how

*LF is the heavy-frame spacing.,
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Lo

the general-instability pressure and the circumferential buckling mode
pradicted by the theory of Reference 5 will vary with overali length for
cylinders with all typical frames and of the same geometry as the models
tested. The circle points representing the experimental results of Models
1, 12, and 16 (No. 1 size heavy frame is equal to the typical frame size)
are connected with a dotted line curve of the same characte:' as the theo-
retical curve to show how the experimental collapse pressures compare with
the theoretical rcsults of Reference 5. Strengthening the frame slightly
at the heavy-frame locations causes the curve to move upward, as indicated
by the dotted line drawn through the square points, which are the experi-
mental results of Models 3, 13, and 18 (No. 3 size heavy frame)., Successive
increases in frame strength at the heavy~frame locations will continue to
displace the collapse pressure curves upward as indicated by the dotted
lines for the No. 4 and No. 5 size heavy frames.

Model 7 was designed with T-frames (No. 7 heavy-frame section)
which had approximately the same effcctive moment of inertia (IFSe) as the
rectangular heavy frames of Model 6 but possessed much greater torsional
restraint. The test results revealed (Figure Sa) that both frame con-
figurations were equally effective in restraining overall instability, thus
confirming that the effective moment of inertia is a fundamental buckling
parameter,

Comparison of the test results in Figure 9a with those in Figure 9d
reveals that the minimum size of heavy frame necessary to be fully effective
may not be dependent upon the heavy-frame spacing for models of the Same
overall length. For these two model series, in which the models were of

approximately the same overall length but had a 40 percent difference in
I
€ ratios for a minimum size, fully effective,
fse
heavy frame were essentially the sawe (78.0 for the Group 1 cylinders and

80.5 for tie Group 4 cylinders). Also presented in F;igure 9 are the curves
obtained by using an analytical heavy-frame solution.‘{ Figures 9b and 9c
substantiate the statement iIn Roference 1 that a shortcoming in the
analytical heavy-frame solution often results in the erroneous appear:aice
of tiic second mode as the overall critical buckling pattern. The predicted

the heavy-frame spacing, the

n = 2 overall buckling patterm was not observed as the critical mode of

18
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failure for the models in Groups 2 and 3; the models failed in ann =3
overall mode, Figures 9a and 9d indicate that when the heavy .'rames are
less than fully effective, agreement between analytical and experimental
results for the longer length models is good only where the heavy frame is
slightly larger than typical. In all cases, the theory closely predicts
the pressure that can be realized when failure occurs between heavy frames,
that is, when the heavy frames are fully effective, but the estimate of the
minimum size heavy frame required to initiate this type of Tailure is poor.
The dotted lines in Figure 9 represent values determined by the
empirical heavy=-frame fomulal in which the required pressure terms were
determined by Kendrick?s Part III solution.s The agreement between the
empirical solution and the experimental results is shown to be good in
Figures 9a, ¢, and d. dowever, the values predicted for the models of
Group 2 (Figure 9b) agree poorly with the test results duc to an incorrect
huckling mode determined by the theory of Reference 5; the incorrect value
was n = 2 (see Figure 10) whereas n= 3 was found experimenially.
A better estimation than that of the empir.cal s.olmzionl can be
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made of the test results by the following relationship:

Figure 1l - CGraphical Representation
of Equation [2]

fse)

fse

(see Figure 11), and where

is the critical pressure for elastic general-instability failure
of the cylinder,

is the moment of inertia of the heavy frame plus an effective
width of shell (Equation [1]),

is the moment of inertia of the typical frame plus an
effective width of shell (Equation {1]),

is the critical pressure for elastic general-instability
failure of the cylinder with the heavy frames replaced with
typical frames,

is the critical p: essure for elastic general-instability
failure of the uniformly stiffened cylinder of length equal to
the heavy frame spacing (this is the maximum pressure
obtainable for a stiffened cylinder with intermediate heavy
frames because the failure will continue to occur between

the heavy stiffeners as their strength is increased further),

is the moment of inertia of the minimum strength fully
effective heavy frame.

The value of the minimum strength fully effective heavy frame can be

3
pF LF Rc

(pF - pB) + Py

——

(n2 ~1) E
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vhere LF is the heavy-frame spacing, . ..

R is the radius from the axis of the cylinder to the centroid
of the effective heavy-frame-shell section,

(¢]

n 1s the critical buckling mode determined for pB; and
", is the modulus of elasticity of the material.

Combinir « Equations [2] and [3] results in

(TWSe - Ifse) (pF - pn)

pcr = — + p.
LT 3 B
- pF L R :

(41

fse
(nz-l)E

The val:e of Pgs Pps and n can be determined with reasonable
accuracy by using the graphical solution of Reference 4, It can be seen
for cach group in Figure 9 that the curve determined by Equation [4]
agrecs well with the experimental results especially for cylinders over
four diometers in length (the discrepancy in Figure 9b is due to the
erroneoys prvdlctlon of the buckling mode as explained earlier in the

text).
WORK IN PROGRESS

At the present the program utilizing the destructive testing of
small-diameter machined cylinders is being continued to fully determine
the effect of intermediate heavy frames on the general-instablity strength
of ring~stiffened cyllnders, and to further evaluate the existing heavy-
frame solutions. Interest is especially directed to the range of geometry
wvhere the dominating contribution to the general-instability strength is
from Jarge typica: frames and not the shell, as in present-~day deep sub-
mersibles. The zheoretical investigation of the heavy-frame effect has
been niensified.

The testing program hLas been expanded to determine if there is any
advantage in using mixed intermediate framing, e.g., Jarge heavy frames
spaced alternately with-medium-sized heavy frames, in lieu of all uniformly
sized heavy frames. B
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CONCLUSIONS

1. The effectiveness of a particular size of intermediate heavy frame in
increasing the elastic general-instability strength of aydrostatically
loaded ring-stiffened cylinders decreases as the cylinder is Jengthened at

least to six diameters.

2. Indications are that the minimum size of the intermediate heavy frames
necessary to cause a ring-stiffened cylinder to fail between heavy frames
is possibly not dependent upon the heavy-frame spacing.

3. Poor agreement exists between the experimental results and the values
predicted by the analytical solution of Reference 1 for all models except
those with extremely large intermediate heavy frames.

4, The empirical heavy-frame formula; and Equation [4] presented herein are
the most practical and accurate methods known by the author for predicting
the behavior of a ring-stiffened cylindrical shell with intermediate

heavy frames, Equation [4] is the more acceptable of the two by reason of
its greater accuracy and the ease with which it may be solved. Additional
experimental results are necessary for a more complete evaluation,
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